Part Number Hot Search : 
ZMM5228B SA48AG NTE1611 24S12 W13204 HT6264 RL105 AS5010
Product Description
Full Text Search
 

To Download 10-F106NIA100SA-M135F Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  10-xx06nia100sa-m135fxx flownpc 1 600v/100a neutral-point-clamped inverter compact flow1 housing low inductance layout ups motor drive solar inverters 10-F106NIA100SA-M135F 10-p106nia100sa-m135fy 10-fy06nia100sa-m135f08 tj=25c, unless otherwise specified parameter symbol value unit buck igbt t h =80c 84 t c =80 c 110 t h =80 c 136 t c =8 0 c 206 t sc t j 150 c 6 s v cc v ge = 15v 360 v t j 150 c v ce <=v c es buck diode t h =80c 53 t c =80 c 72 t h =80 c 70 t c =80 c 106 a tur n off safe operating area 200 dc forward current i f i frm v rrm a t c =100c 300 max imum junction temperature power dissipation per igbt v ge t j max p tot short circuit ratings peak repetitive reverse voltage gate-emitter peak voltage types maximum ratings condition flow1 housing targe t applications schematic maximum junction temperature features power dissipation per diode p tot collector-emitter break down voltage pulse d collector current dc collector current v ce t j max c v c v 2 0 w a a v 6 00 w a 600 175 t j =t j max t j =t j max t j =t j max t p limited by t j max i cpulse i c repetitive peak forward current t p limited by t j max 175 300 t j = t j max t j =25c 12mm height 17mm height 1 r e vi si o n: 3 copyright by vincotech
10-xx06nia100sa-m135fxx tj=25c, unless otherwise specified parameter symbol value unit maximum ratings condition boost igbt t h =80c 80 t c =80 c 104 t h =80 c 126 t c =8 0 c 192 t sc t j 150 c 6 s v cc v ge = 15v 360 v t j 150 c v ce <=v c es boost inverse diode t h =80c 74 t c =80 c 98 t h =80 c 107 t c =80 c 162 boost diode t j =25c t h =80c 75 t c =80 c 100 t h =80 c 110 t c =80 c 166 thermal properties insulation properties v is t=2s dc vol tage 4000 v min 12,7 mm min 12,7 mm turn off safe operating area 200 a 600 clearance insulation voltage creepage distance t op operation temperature under switching condition c maxi mum junction temperature t j max 175 c - 40+(tjmax - 25) c storage temperature t stg -40+125 600 col lector-emitter break down voltage power dissipation per diode p tot v rrm v ge i f peak repetitive reverse voltage repet itive peak forward current i frm t j =t j max t j =t j max t p limited by t j max dc fo rward current i f v w a w c a a 175 2 0 0 v a 200 600 maximum junction temperature t j max 175 t c =25 c v rrm dc forward current p tot peak repetitive reverse voltage repet itive peak forward current t p limited by t j max v a v t j =t j max 300 20 t j = t j max c w a t p li m ited by t j max power dissipation per diode t j =t j max maxi m um junction temperature pulsed collector current gate-emitter peak voltage i frm power dissipation per igbt t j max p tot t j =t j max i cpuls short circuit ratings dc col lector current i c v ce 2 revi sion: 3 copyright by vincotech
10-xx06nia100sa-m135fxx parameter symbo l unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max tj=25c 5 5,8 6,5 tj=150c tj=25c 1,05 1,50 1,85 tj=150c 1,73 tj=25c 60 tj=150c tj=25c 1,4 tj=150c tj=25c 160 tj=150c 189 tj=25c 26 tj=150c 31 tj=25c 270 tj=150c 296 tj=25c 100 tj=150c 123 tj=25c 1,887 tj=150c 2,405 tj=25c 2,903 tj=150c 3,808 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 0,81 w/mk 0,699 k/ w tj=25c 1,4 1,70 1,9 tj=150c 1,71 tj=25c 86 tj=150c 113 tj=25c 127 tj=150c 164 tj=25c 5,072 tj=150c 9,357 di(rec)max tj=25c 3385 /dt tj=150c 1871 tj=25c 1,154 tj=150c 2,238 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 0,81 w/mk 1,360 k/ w note: all characteristic values are related to gates of p aralell igbts connected together ns 400 628 0 p f 186 620 none ? v mws a v ns a a a /s rgon=8 ? 0 tj=25 c tj=25c buck igbt gate emitter threshold voltage integr ated gate resistor input capacitance turn-on energy loss per pulse fall time turn-off delay time turn-on delay time collector-emitter cut-off current incl. diode gate-emitter leakage current characteristic values value condi tions collector-emitter saturation voltage rise ti me output capacitance turn-off energy loss per pulse reverse recovered energy i rrm reverse recovered charge reverse recovery time peak reverse recovery current reverse transfer capacitance diode forward voltage gate charge buck diode peak rate of fall of recovery current t d(on) v ge(th) r gint v ce(sat) i ces 15 20 600 0 f=1mhz rgoff=8 ? c rss vce=vge c ies rgon=8 ? i ges e on v f q gate erec q rr t rr c oss t r t d(off) t f e off 15 25 15 350 100 0 350 480 15 0,0016 100 100 v nc c mws 100 100 3 rev ision: 3 copyright by vincotech
10-xx06nia100sa-m135fxx parameter symbo l unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max characteristic values value condi tions tj=25c 5 5,8 6,5 tj=150c tj=25c 1,05 1,5 1,85 tj=150c 1,73 tj=25c 60 tj=150c tj=25c 1,4 tj=150c tj=25c 164 tj=150c 169 tj=25c 29 tj=150c 32 tj=25c 273 tj=150c 298 tj=25c 97 tj=150c 116 tj=25c 1,93 tj=150c 2,55 tj=25c 3,22 tj=150c 4,27 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 0,81 w/mk 0,751 k/ w tj=25c 1,2 1,69 1,9 tj=125c 1,65 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 0,81 w/mk 0,867 k / w tj=25c 1,2 1,68 1,9 tj=150c 1,65 tj=25c 60 tj=150c tj=25c 71 tj=150c 90 tj=25c 130 tj=150c 287 tj=25c 4,4 tj=150c 9,3 di(rec)max tj=25c 2960 /dt tj=150c 551 tj=25c 1,03 tj=150c 2,37 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 0,81 w/mk 0,867 k/ w 400 6280 none tj=25c 100 25 100 100 100 15 600 350 rgon=8 ? 600 i rrm 100 0,0016 15 0 rgon=8 ? 20 thermistor reverse recovery energy t rr q rr e rec reverse recovery time peak rate of fall of recovery current diode forward voltage reverse leakage current v f i r v ce =v ge 15 f=1mhz rgoff=8 ? rated resistance power dissipation constant deviation of r100 r100=1486 ? -5 200 t=25 c mw/k 2 mw 480 0 tj=25c i ges v ce(sat) v ge(th) reverse transfer capacitance 0 boost inverse diode t f t r t d(on) fall time collector-emitter cut-off incl diode boost diode diode forward voltage v f collector-emitter saturation voltage e off peak reverse recovery current reverse recovered charge q gate gate-emitter leakage current gate charge input capacitance output capacitance turn-off energy loss per pulse integrated gate resistor boost igbt c rss c oss c ies t d(off) e on i ces r gint 186 620 mws c % ? 5 nc a v v a a/ s ? a ns mws v a ns p f v powe r dissipation p gate emitter threshold voltage turn-on energy loss per pulse turn-off delay time turn-on delay time rise time b-value b(25/50) tol. 3% r ? r/r k t=25c k 3 996 t=25c t=25c 22000 t=25c 3950 t=100c b-value b(25/100) tol. 3% vincotech ntc reference b 4 rev ision: 3 copyright by vincotech
10-xx06nia100sa-m135fxx figure 1 igbt figure 2 igbt typical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 2 50 s t p = 2 50 s t j = 2 5 c t j = 150 c v g e from 7 v t o 17 v in steps of 1 v v ge from 7 v t o 17 v in steps of 1 v figure 3 igbt figure 4 fred typical transfer characteristics typical diode forward current as i c = f(v ge ) a funct ion of forward voltage i f = f(v f ) at at t p = 2 50 s t p = 2 50 s v ce = 10 v buc k typical output characteristics 0 50 100 150 200 250 300 0 1 2 3 4 5 v ce (v) i c (a) 0 20 40 60 80 100 0 2 4 6 8 10 12 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 50 100 150 200 250 0 0,5 1 1,5 2 2,5 3 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 50 100 150 200 250 300 0 1 2 3 4 5 v ce (v) i c (a) 5 rev ision: 3 copyright by vincotech
10-xx06nia100sa-m135fxx figure 5 igbt figure 6 igbt typical switching energy losses typical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f (r g ) with an inductive load at with an inductive load at t j = 25/1 5 0 c t j = 25/15 0 c v ce = 350 v v ce = 3 50 v v ge = 15 v v ge = 15 v r go n = 8 ? i c = 100 a r go ff = 8 ? figure 7 f red figure 8 fred typical reverse recovery energy loss typical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/1 5 0 c t j = 25/15 0 c v ce = 350 v v ce = 3 50 v v ge = 15 v v ge = 15 v r go n = 8 ? i c = 100 a bu ck e on high t e off high t e on low t e off low t 0 2 4 6 8 0 20 40 60 80 100 120 140 160 180 200 i c (a) e (mws) e off high t e on high t e on low t e off low t 0 2 4 6 8 10 0 8 16 24 32 40 r g ( ? ) e (mws) e rec low t 0,0 0,5 1,0 1 ,5 2,0 2,5 3,0 0 20 40 60 80 100 120 140 160 180 200 i c (a) e (mws) e rec high t e rec high t e rec low t 0,0 0,5 1,0 1 ,5 2,0 2,5 3,0 0 8 16 24 32 40 r g ( ? ) e (mws) 6 rev ision: 3 copyright by vincotech
10-xx06nia100sa-m135fxx figure 9 igbt figure 10 igbt typical switching times as a typical switching times as a function of collector current function of gate resistor t = f(i c ) t = f (r g ) with an inductive load at with an inductive load at t j = 150 c t j = 150 c v c e = 350 v v ce = 3 50 v v ge = 15 v v ge = 15 v r go n = 8 ? i c = 100 a r go ff = 8 ? figure 1 1 fred figure 12 fred typical reverse recovery time as a typical reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(ic) t rr = f(r gon ) at at t j = 2 5/1 5 0 c t j = 25/15 0 c v ce = 350 v v r = 35 0 v v ge = 15 v i f = 10 0 a r go n = 8 ? v ge = 15 v bu ck t doff t f t don t r 0,00 0,01 0, 10 1,00 0 20 40 60 80 100 120 140 160 180 200 i c (a) t (ms) t rr low t 0,0 0,1 0,2 0 ,3 0,4 0 8 16 24 32 40 r gon ( ? ) t rr (ms) t rr low t t doff t f t don t r 0,00 0,01 0 , 10 1,00 0 8 16 24 32 40 r g ( ? ) t (ms) t rr high t t rr low t 0,00 0,05 0, 10 0,15 0,20 0 20 40 60 80 100 120 140 160 180 200 i c (a) t rr (ms) 7 rev ision: 3 copyright by vincotech
10-xx06nia100sa-m135fxx figure 13 fred figure 14 fred typical reverse recovery charge as a typical reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c ) q rr = f(r gon ) at at at t j = 25/1 5 0 c t j = 25/15 0 c v ce = 350 v v r = 35 0 v v ge = 15 v i f = 10 0 a r go n = 8 ? v ge = 15 v figur e 15 fred figure 16 fred typical reverse recovery current as a typical reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c ) i rrm = f(r gon ) at at t j = 2 5/1 5 0 c t j = 25/15 0 c v ce = 350 v v r = 35 0 v v ge = 15 v i f = 10 0 a r go n = 8 ? v ge = 15 v bu ck i rrm high t i rrm low t 0 40 80 120 1 60 200 0 8 16 24 32 40 r gon ( ? ) i rrm (a) q rr high t q rr low t 0 3 6 9 12 0 8 16 24 32 40 r gon ( ? ) q rr (mc) i rrm high t i rrm low t 0 30 60 90 12 0 150 0 20 40 60 80 100 120 140 160 180 200 i c (a) i rrm (a) q rr high t q rr low t 0 3 6 9 12 15 0 2 0 40 60 80 100 120 140 160 180 200 i c (a) q rr (mc) 8 rev ision: 3 copyright by vincotech
10-xx06nia100sa-m135fxx figure 17 fred figure 18 fred typical rate of fall of forward and reverse recovery curre nt typical rate of fall of forward and reverse recovery current as a function of collector current as a function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(ic) di 0 /dt, di rec /dt = f(r gon ) at at t j = 2 5/1 5 0 c t j = 25/15 0 c v ce = 350 v v r = 35 0 v v ge = 15 v i f = 10 0 a r go n = 8 ? v ge = 15 v figur e 19 igbt figure 20 fred igbt transient thermal impedance fred t ransient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at at d = t p / t d = t p / t r thjh = 0,699 k/w r thjh = 1,359 k/w igbt thermal model values fred thermal model values r (c/w) tau (s) r (c/w) tau (s) 0,05 4,4e+00 0,07 4,4e+00 0,12 9,5e-01 0,19 8,7e-01 0,32 2,0e-01 0,62 1,7e-01 0,12 6,2e-02 0,31 5,7e-02 0,07 1,4e-02 0,13 1,1e-02 0,02 2,8e-03 0,04 1,6e-03 buck t p (s) z thjh (k/w) 101 100 10-1 10-2 10-4 10-3 10-2 10-1 100 10 10-5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 10 10- 10- 10- 10- 10- 10- 10 10 10- d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 di rec /dt t di 0 /dt t 0 2000 4 0 00 6000 8000 10000 0 8 16 24 32 40 r gon (w) di rec / dt (a/ms) di rec /dt t di o /dt t 0 1000 2 0 00 3000 4000 5000 0 20 40 60 80 100 120 140 160 180 200 i c (a) di rec / dt (a/ms) 9 rev ision: 3 copyright by vincotech
10-xx06nia100sa-m135fxx figure 21 igbt figure 22 igbt power dissipation as a collect or current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at at t j = 17 5 c t j = 175 c v g e = 15 v figure 23 fred figure 24 fred power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 17 5 c t j = 175 c b uck 0 50 100 150 200 250 0 50 100 150 200 t h ( o c) p tot (w) 0 20 40 60 80 100 120 140 0 50 100 150 200 t h ( o c) i c (a) 0 40 80 120 160 0 50 100 150 200 t h ( o c) p tot (w) 0 20 40 60 80 100 0 50 100 150 200 t h ( o c) i f (a) 10 re vision: 3 copyright by vincotech
10-xx06nia100sa-m135fxx figure 25 igbt figure 26 igbt safe operating area as a function gate v oltage vs gate charge of collector-emitter voltage i c = f(v ce ) v ge = f(q g ) at at d = s ingle pulse i c = 100 a th = 80 oc v ge = 15 v t j = t jmax oc buck v ce (v) i c (a) 10 3 10 0 10 -1 10 1 10 2 10 1 10 2 1 100us 1ms 10ms 100ms dc 10 0 10 3 0 2 4 6 8 10 12 14 16 0 200 400 600 800 q g (nc) v ge (v) 120v 480v 11 re vision: 3 copyright by vincotech
10-xx06nia100sa-m135fxx figure 1 igbt figure 2 igbt typical output characteristics typical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 2 50 s t p = 2 50 s t j = 2 5 c t j = 150 c v ge from 7 v t o 17 v in steps of 1 v v ge from 7 v t o 17 v in steps of 1 v figure 3 igbt figure 4 fred typical transfer characteristics typical diode forward current as i c = f(v ge ) a funct ion of forward voltage i f = f(v f ) at at t p = 2 50 s t p = 2 50 s v ce = 10 v boo st 0 50 100 150 200 250 300 0 1 2 3 4 5 v ce (v) i c (a) 0 20 40 60 80 100 0 2 4 6 8 10 12 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 50 100 150 200 250 300 0,0 0,5 1,0 1,5 2,0 2,5 3,0 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 50 100 150 200 250 300 0 1 2 3 4 5 v ce (v) i c (a) 12 re vision: 3 copyright by vincotech
10-xx06nia100sa-m135fxx figure 5 igbt figure 6 igbt typical switching energy losses typical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f (r g ) with an inductive load at with an inductive load at t j = 25/1 5 0 c t j = 25/15 0 c v ce = 350 v v ce = 3 50 v v ge = 15 v v ge = 15 v r go n = 8 ? i c = 101 a r go ff = 8 ? figure 7 i gbt figure 8 igbt typical reverse recovery energy loss typical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/1 5 0 c t j = 25/15 0 c v ce = 350 v v ce = 3 50 v v ge = 15 v v ge = 15 v r go n = 8 ? i c = 101 a bo ost e rec high t e rec low t 0 1 2 3 4 0 20 40 60 80 100 120 140 160 180 200 i c (a) e (mws) e rec high t e rec low t 0 0,5 1 1,5 2 2 ,5 3 3,5 0 8 16 24 32 40 r g ( w ww w ) e (mws) e off high t e on high t e on low t e off low t 0 2 4 6 8 0 20 4 0 60 80 100 120 140 160 180 200 i c (a) e (mws) e off high t e on high t e on low t e off low t 0 2 4 6 8 10 0 8 16 24 32 4 0 r g ( w ww w ) e (mws) 13 re vision: 3 copyright by vincotech
10-xx06nia100sa-m135fxx figure 9 igbt figure 10 igbt typical switching times as a typical switching times as a function of collector current function of gate resistor t = f(i c ) t = f (r g ) with an inductive load at with an inductive load at t j = 150 c t j = 150 c v c e = 350 v v ce = 3 50 v v ge = 15 v v ge = 15 v r go n = 8 ? i c = 101 a r go ff = 8 ? figure 1 1 fred figure 12 fred typical reverse recovery time as a typical reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(ic) t rr = f(r gon ) at at t j = 2 5/1 5 0 c t j = 25/15 0 c v ce = 350 v v r = 35 0 v v ge = 15 v i f = 10 1 a r go n = 8 ? v ge = 15 v bo ost t doff t f t don t r 0,001 0,01 0, 1 1 0 20 40 60 80 100 120 140 160 180 200 i c (a) t ( m s) t doff t f t don t r 0,001 0,01 0 , 1 1 0 8 16 24 32 40 r g ( w ww w ) t ( m s) t rr high t t rr low t 0,0 0,1 0,2 0 ,3 0,4 0 8 16 24 32 40 r gon ( ? ) t rr (ms) t rr high t t rr low t 0,0 0,1 0,2 0 ,3 0,4 0 20 40 60 80 100 120 140 160 180 200 i c (a) t rr (ms) 14 re vision: 3 copyright by vincotech
10-xx06nia100sa-m135fxx figure 13 fred figure 14 fred typical reverse recovery charge as a typical reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c ) q rr = f(r gon ) at at at t j = 25/1 5 0 c t j = 25/15 0 c v ce = 350 v v r = 35 0 v v ge = 15 v i f = 10 1 a r go n = 8 ? v ge = 15 v figur e 15 fred figure 16 fred typical reverse recovery current as a typical reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c ) i rrm = f(r gon ) at at t j = 2 5/1 5 0 c t j = 25/15 0 c v ce = 350 v v r = 35 0 v v ge = 15 v i f = 10 1 a r go n = 8 ? v ge = 15 v bo ost i rrm high t i rrm low t 0 30 60 90 12 0 150 0 8 16 24 32 40 r gon ( ? ) i rrm (a) q rr high t q rr low t 0 2 4 6 8 10 0 8 16 24 32 40 r gon ( ? ) q rr (mc) i rrm high t i rrm low t 0 30 60 90 12 0 150 0 20 40 60 80 100 120 140 160 180 200 i c (a) i rrm (a) q rr high t q rr low t 0 3 6 9 12 15 0 2 0 40 60 80 100 120 140 160 180 200 i c (a) q rr (mc) 15 re vision: 3 copyright by vincotech
10-xx06nia100sa-m135fxx figure 17 fred figure 18 fred typical rate of fall of forward and reverse recovery curre nt typical rate of fall of forward and reverse recovery current as a function of collector current as a function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(ic) di 0 /dt, di rec /dt = f(r gon ) at at t j = 2 5/1 5 0 c t j = 25/15 0 c v ce = 350 v v r = 35 0 v v ge = 15 v i f = 10 1 a r go n = 8 ? v ge = 15 v figur e 19 igbt figure 20 fred igbt transient thermal impedance fred t ransient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at at d = tp / t d = tp / t r thjh = 0,75 1 k/w r thjh = 0,867 k/w igbt thermal model values fred thermal model values r (c/w) tau (s) r (c/w) tau (s) 0,08 3,1e+00 0,05 4,8e+00 0,12 7,5e-01 0,13 8,5e-01 0,37 1,8e-01 0,34 1,5e-01 0,11 3,8e-02 0,18 3,9e-02 0,05 8,2e-03 0,11 9,0e-03 0,02 8,3e-04 0,05 1,1e-03 boost t p (s) z thjh (k/w) 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 di 0 /dt t di rec /dt t 0 2000 4 0 00 6000 8000 10000 0 8 16 24 32 40 r gon ( ? ) di rec / dt (a/ms) di rec /dt t di o /dt t 0 1000 2 0 00 3000 4000 5000 0 20 40 60 80 100 120 140 160 180 200 i c (a) di rec / dt (a/ms) 16 re vision: 3 copyright by vincotech
10-xx06nia100sa-m135fxx figure 21 igbt figure 22 igbt power dissipation as a collect or current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at at t j = 17 5 o c t j = 175 oc v g e = 15 v figure 23 fred figure 24 fred power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 17 5 o c t j = 175 oc b oost 0 40 80 120 160 200 240 0 50 100 150 200 t h ( o c) p tot (w) 0 20 40 60 80 100 120 0 50 100 150 200 t h ( o c) i c (a) 0 40 80 120 160 200 240 0 50 100 150 200 th ( o c) p tot (w) 0 20 40 60 80 100 120 0 50 100 150 200 th ( o c) i f (a) 17 re vision: 3 copyright by vincotech
10-xx06nia100sa-m135fxx figure 25 boost inverse diode figure 26 boost inverse diode typical diode forward current as diode tr ansient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at at t p = 2 50 s d = tp / t r thjh = 0,890 k/w figure 27 boost inverse diode figure 28 boost inverse diode power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 17 5 o c t j = 175 oc b oost 0 50 100 150 200 250 0 0,5 1 1,5 2 2,5 3 v f (v) i f (a) t j = 25c t j = t jmax -25c t p (s) z thjc (k/w) d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 40 80 120 160 200 0 50 100 150 200 th ( o c) p tot (w) 0 20 40 60 80 100 120 0 50 100 150 200 th ( o c) i f (a) 18 re vision: 3 copyright by vincotech
10-xx06nia100sa-m135fxx figure 1 thermistor figure 2 thermistor typical ntc characteristic typical ntc resistance values as a function of temperature r t = f(t) thermistor ntc-typical temperature characteristic 0 5000 1 0 000 15000 20000 25000 25 50 75 100 125 t (c) r/ ? [ ] w = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - 25 100/25 11 25 )( tt b ertr 19 re vision: 3 copyright by vincotech
10-xx06nia100sa-m135fxx t j 150 c r gon 8 ? r goff 8 ? figure 1 o utput inverter igbt figure 2 output inverter igbt turn-off switching waveforms & definition of t doff , t eoff turn-on switching waveforms & definition of t don , t eon (t eoff = integrating time for e off ) (t eon = integrating time for e on ) v ge (0%) = -15 v v g e (0%) = -15 v v ge (100%) = 15 v v ge ( 100%) = 15 v v c (1 00%) = 350 v v c ( 100%) = 350 v i c ( 100%) = 100 a i c ( 100%) = 100 a t do ff = 0,30 s t do n = 0,19 s t eo ff = 0,55 s t eo n = 0,39 s figur e 3 output inverter igbt figure 4 output inverter igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 350 v v c ( 100%) = 350 v i c ( 100%) = 100 a i c ( 100%) = 100 a t f = 0 ,12 s t r = 0 ,03 s sw itching definitions buck igbt general conditions = = = i c 1% v ce 90% v ge 90% -25 0 25 50 75 10 0 125 -0,2 0 0,2 0,4 0,6 time (us) % t doff t eoff v ce i c v ge i c 10% v ge10% t don v ce 3% -50 0 50 100 15 0 200 250 2,9 3 3,1 3,2 3,3 3,4 3,5 time(us) % i c v ce t eon v ge fitted i c10% i c 90% i c 60% i c 40% -25 0 25 50 75 10 0 125 0,1 0,2 0,3 0,4 0,5 time (us) % v ce i c t f i c 10% i c 90% -50 0 50 100 15 0 200 250 3,1 3,2 3,3 3,4 3,5 time(us) % t r v ce i c 20 rev i sion: 3 copyright by vincotech
10-xx06nia100sa-m135fxx figure 5 output inverter igbt figure 6 output inverter igbt turn-off switching waveforms & definition of t eoff turn-on switching waveforms & definition of t eon p off (100%) = 34,85 kw p on (100%) = 34,85 kw e off (100%) = 3,81 m j e on (100%) = 2,41 m j t eoff = 0,55 s t eo n = 0,39 s figur e 7 output inverter fred figure 8 output inverter igbt gate voltage vs gate charge (measured) turn-off switching waveforms & definition of t rr v geoff = -15 v v d ( 100%) = 350 v v ge on = 15 v i d (1 00%) = 100 a v c ( 100%) = 350 v i rr m (100%) = -113 a i c (100%) = 100 a t rr = 0,16 s q g = 1 049, 61 nc switching definitions buck igbt i c 1% v g e90% -25 0 25 50 75 1 0 0 125 -0,2 0 0,2 0,4 0,6 time (us) % p off e off t eoff v ce 3% v ge 10% -25 0 25 50 75 10 0 125 2,9 3 3,1 3,2 3,3 3,4 3,5 time(us) % p on e on t eon -20 -15 -10 -5 0 5 10 15 20 -200 0 200 400 600 800 1000 1200 qg (nc) v ge (v) i rrm 10% i rrm 90% i rrm 100% t rr -150 -100 -5 0 0 50 100 150 3,1 3,2 3,3 3,4 3,5 time(us) % i d v d fitted 21 rev i sion: 3 copyright by vincotech
10-xx06nia100sa-m135fxx figure 9 output inverter fred figure 10 output inverter fred turn-on switching waveforms & definition of t qrr turn-on switching waveforms & definition of t erec (t qrr = integrating time for q rr ) (t erec = integrating time for e rec ) i d (100%) = 100 a p r e c (100%) = 34,85 kw q rr (100%) = 9,36 c e re c (100%) = 2,24 m j t qrr = 0,33 s t er ec = 0,33 s figur e 11 buck stage switching measurement circuit switching definitions buck igbt measurement circuit 80 3000 40 60 40 1 1,6 1,4 1 100 40 40 1,25 t qrr -150 -100 - 5 0 0 50 100 150 3,1 3,2 3,3 3,4 3,5 3,6 3,7 time(us) % i d q rr -25 0 25 50 75 100 125 3,1 3,2 3,3 3,4 3,5 3,6 time(us) % p rec e rec t erec 22 re vision: 3 copyright by vincotech
10-xx06nia100sa-m135fxx t j 150 c r gon 8 ? r goff 8 ? figure 1 o utput inverter igbt figure 2 output inverter igbt turn-off switching waveforms & definition of t doff , t eoff turn-on switching waveforms & definition of t don , t eon (t eoff = integrating time for e off ) (t eon = integrating time for e on ) v ge (0%) = -15 v v g e (0%) = -15 v v ge (100%) = 15 v v ge ( 100%) = 15 v v c (1 00%) = 350 v v c ( 100%) = 350 v i c ( 100%) = 100 a i c ( 100%) = 100 a t do ff = 0,30 s t do n = 0,17 s t eo ff = 0,57 s t eo n = 0,36 s figur e 3 output inverter igbt figure 4 output inverter igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 350 v v c ( 100%) = 350 v i c ( 100%) = 100 a i c ( 100%) = 100 a t f = 0 ,12 s t r = 0 ,03 s sw itching definitions reactiv general conditions = = = i c 1% v ce 90% v ge 90% -25 0 25 50 75 10 0 125 -0,2 0 0,2 0,4 0,6 time (us) % t doff t eoff v ce i c v ge i c 10% v ge10% t don v ce 3% -50 0 50 100 15 0 200 250 2,9 3 3,1 3,2 3,3 3,4 3,5 time(us) % i c v ce t eon v ge fitted i c10% i c 90% i c 60% i c 40% -25 0 25 50 75 10 0 125 0,1 0,2 0,3 0,4 0,5 time (us) % v ce i c t f i c 10% i c 90% -50 0 50 100 15 0 200 250 3 3,1 3,2 3,3 3,4 3,5 time(us) % t r v ce i c 23 rev i sion: 3 copyright by vincotech
10-xx06nia100sa-m135fxx figure 5 output inverter igbt figure 6 output inverter igbt turn-off switching waveforms & definition of t eoff turn-on switching waveforms & definition of t eon p off (100%) = 35,15 kw p on (100%) = 35,15 kw e off (100%) = 4,27 m j e on (100%) = 2,55 m j t eoff = 0,57 s t eo n = 0,36 s figur e 7 output inverter fred figure 8 output inverter igbt gate voltage vs gate charge (measured) turn-off switching waveforms & definition of t rr v geoff = -15 v v d ( 100%) = 350 v v ge on = 15 v i d (1 00%) = 100 a v c ( 100%) = 350 v i rr m (100%) = -90 a i c ( 100%) = 100 a t rr = 0,29 s q g = 1 042, 08 nc switching definitions reactiv i c 1% v g e90% -25 0 25 50 75 10 0 125 -0,2 0 0,2 0,4 0,6 time (us) % p off e off t eoff v ce 3% v ge 10% -25 0 25 50 75 10 0 125 2,9 3 3,1 3,2 3,3 3,4 3,5 time(us) % p on e on t eon -20 -15 -10 -5 0 5 10 15 20 -200 0 200 400 600 800 1000 1200 qg (nc) v ge (v) i rrm 10% i rrm 90% i rrm 100% t rr -150 -100 -5 0 0 50 100 150 3,1 3,2 3,3 3,4 3,5 3,6 3,7 time(us) % i d v d fitted 24 rev i sion: 3 copyright by vincotech
10-xx06nia100sa-m135fxx figure 9 output inverter fred figure 10 output inverter fred turn-on switching waveforms & definition of t qrr turn-on switching waveforms & definition of t erec (t qrr = integrating time for q rr ) (t erec = integrating time for e rec ) i d (100%) = 100 a p r e c (100%) = 35,15 kw q rr (100%) = 9,27 c e re c (100%) = 2,37 m j t qrr = 0,57 s t er ec = 0,57 s figur e 11 boost stage switching measurement circuit switching definitions reactiv measurement circuit 80 100 40 40 1 1,6 1,4 100 40 40 30 t qrr -150 -100 - 5 0 0 50 100 150 3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,8 3,9 time(us) % i d q rr -25 0 25 50 75 100 125 3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,8 3,9 time(us) % p rec e rec t erec 25 re vision: 3 copyright by vincotech
10-xx06nia100sa-m135fxx version ordering code in datamatrix as in packaging barcode as without thermal paste 17mm housing, solder pin 10-F106NIA100SA-M135F m135f m135f without thermal paste 17mm housing, pressfit pin 10-p106nia100sa-m135fy m135fy m135fy without thermal paste 12mm housing, solder pin 10-fy06nia100sa-m135f08 m135f08 m135f08 0 outline pinout ordering code & marking ordering code and marking - outline - pinout 26 re vision: 3 copyright by vincotech
10-xx06nia100sa-m135fxx disclaimer life s upport policy as used herein: the information given in this datasheet describes the type of component and does not represent assured characteristics. for tested values please contact vincotech.vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of vincotech. 1. life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. a critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. 27 rev ision: 3 copyright by vincotech


▲Up To Search▲   

 
Price & Availability of 10-F106NIA100SA-M135F

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X